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(c) Inelastic Compressive Strains at end of load application 

 

 
(d) Inelastic Tensile Strains at end of load application 

Figure D-4: Stresses and Strains for 3V36NU model after load application 
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BEHAVIOR OF 3V72NU FINITE ELEMENT MODEL 
 

 
(a) Maximum Tensile Stresses at joint opening of 1/8 in. 

 

 
(b) Maximum Compressive Stresses at joint opening of 1/8 in. 

 

 
(c) Maximum Compressive Strains at joint opening of 1/8 in. 
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(d) Maximum Tensile Strains at joint opening of 1/8 in. 

Figure D-5: Stress and Strains for 3V36AM slab model at joint opening of 1/8 in. 
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(b) Maximum Compressive Stresses at end of load application 
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(c) Inelastic Compressive Strains at end of load application 

 

 
(d) Inelastic Tensile Strains at end of load application 

Figure D-6: Stresses and Strains for 3V72NU model after load application 
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BEHAVIOR OF 3V36AM FINITE ELEMENT MODEL 
 

 
(a) Maximum Tensile Stresses at joint opening of 1/8 in. 

 

 
(b) Maximum Compressive Stresses at joint opening of 1/8 in. 

 

 
(c) Maximum Compressive Strains at joint opening of 1/8 in. 

West East 

West East 

West East 



 330

 

 
(d) Maximum Tensile Strains at joint opening of 1/8 in. 

Figure D-7: Stress and Strains for 3V36AM slab model at joint opening of 1/8 in. 
 

 
(a) Maximum Tensile Stresses at end of load application 

 

 
(b) Maximum Compressive Stresses at end of load application 
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(c) Inelastic Compressive Strains at end of load application 

 

 
(d) Inelastic Tensile Strains at end of load application 

Figure D-8: Stresses and Strains for 3V36AM model after load application 
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BEHAVIOR OF 3V72AM FINITE ELEMENT MODEL 
 

 
(a) Maximum Tensile Stresses at joint opening of 1/8 in. 

 

 
(b) Maximum Compressive Stresses at joint opening of 1/8 in. 

 

 
(c) Maximum Compressive Strains at joint opening of 1/8 in. 
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(d) Maximum Tensile Strains at joint opening of 1/8 in. 

Figure D-9: Stress and Strains for 3V72AM slab model at joint opening of 1/8 in. 
 

 
(a) Maximum Tensile Stresses at end of load application 

 

 
(b) Maximum Compressive Stresses at end of load application 
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(c) Inelastic Compressive Strains at end of load application 

 

 
(d) Inelastic Tensile Strains at end of load application 

Figure D-10: Stresses and Strains for 3V72AM model after load application 
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BEHAVIOR OF 3H36NU FINITE ELEMENT MODEL 
 

 
(a) Maximum Tensile Stresses at joint opening of 1/8 in. 

 

 
(b) Maximum Compressive Stresses at joint opening of 1/8 in. 

 

(c) Maximum Compressive Strains at joint opening of 1/8 in. 
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West East 

West East 
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(d) Maximum Tensile Strains at joint opening of 1/8 in. 

Figure D-11: Stress and Strains for 3H36NU slab model at joint opening of 1/8 in. 
 

 
(a) Maximum Tensile Stresses at end of load application 

 

 
(b) Maximum Compressive Stresses at end of load application 
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(c) Inelastic Compressive Strains at end of load application 

 

 
(d) Inelastic Tensile Strains at end of load application 

Figure D-12: Stresses and Strains for 3H36NU model after load application 
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BEHAVIOR OF 3H72NU FINITE ELEMENT MODEL 
 

 
(a) Maximum Tensile Stresses at joint opening of 1/8 in. 

 

 
(b) Maximum Compressive Stresses at joint opening of 1/8 in. 

 

(c) Maximum Compressive Strains at joint opening of 1/8 in. 
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(d) Maximum Tensile Strains at joint opening of 1/8 in. 

Figure D-13: Stress and Strains for 3H72NU slab model at joint opening of 1/8 in. 
 

 
(a) Maximum Tensile Stresses at end of load application 

 

 
(b) Maximum Compressive Stresses at end of load application 

West East 

Loaded  Unloaded 

Loaded  Unloaded 

Loaded Unloaded 



 340

 

 
(c) Inelastic Compressive Strains at end of load application 

 

 
(d) Inelastic Tensile Strains at end of load application 

Figure D-14: Stresses and Strains for 3H72NU model after load application 
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BEHAVIOR OF 3H36AM FINITE ELEMENT MODEL 
 

 
(a) Maximum Tensile Stresses at joint opening of 1/8 in. 

 

 
(b) Maximum Compressive Stresses at joint opening of 1/8 in. 

 

(c) Maximum Compressive Strains at joint opening of 1/8 in. 
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(d) Maximum Tensile Strains at joint opening of 1/8 in. 

Figure D-15: Stress and Strains for 3H36AM slab model at joint opening of 1/8 in. 
 

 
(a) Maximum Tensile Stresses at end of load application 

 

 
(b) Maximum Compressive Stresses at end of load application 
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(c) Inelastic Compressive Strains at end of load application 

 

 
(d) Inelastic Tensile Strains at end of load application 

Figure D-16: Stresses and Strains for 3H36AM model after load application 
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BEHAVIOR OF 3H72AM FINITE ELEMENT MODEL 
 

 
(a) Maximum Tensile Stresses at joint opening of 1/8 in. 

 

 
(b) Maximum Compressive Stresses at joint opening of 1/8 in. 

 

 
(c) Maximum Compressive Strains at joint opening of 1/8 in. 
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(d) Maximum Tensile Strains at joint opening of 1/8 in. 

Figure D-17: Stress and Strains for 3H72AM slab model at joint opening of 1/8 in. 
 

 
(a) Maximum Tensile Stresses at end of load application 

 

 
(b) Maximum Compressive Stresses at end of load application 
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(c) Inelastic Compressive Strains at end of load application 

 

 
(d) Inelastic Tensile Strains at end of load application 

Figure D-18: Stresses and Strains for 3H72AM model after load application 
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APPENDIX E 

CONVERGENCE STUDY OF THE 3D FINITE ELEMENT MODEL 
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A convergence study / mesh sensitivity study was carried out to compare the formation of 

the various events / material damage limit states on the dowel pullout force-joint opening 

behavior between a coarse and fine mesh. The 2V18NU test finite element model was 

used for this study. This model was primarily used as all the events / material damage 

limit states occurred on the dowel pullout force-joint opening behavior in the finite 

element model. The element size of the concrete surrounding the dowel bar in the fine 

mesh model was 0.25 in. (approx.) compared to an element size of 0.5 in. (approx.) in the 

coarse mesh.  

Figure E-1 presents a comparison of the dowel pullout force per bar – joint 

opening behavior for the 2V18NU test specimen. As the events (A-F) form in the FE 

model, the joint opening and dowel pullout force per bar is presented in Table E-1. From 

the results of the convergence study, the magnitude of joint opening and pullout forces 

compare favorably with the coarse and fine mesh finite element models.     
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Figure E-1: Comparison of dowel pullout force-joint opening behavior for the 2V18NU 

coarse and fine mesh finite element model 

 

Table E-1: Comparison of the fine and coarse mesh joint opening and dowel pullout forces 

 Fine Mesh Coarse Mesh 
 Joint Opening Force / bar Joint Opening Force / bar 
 (in.) (lbs) (in.) (lbs) 

B 0.012 979.41 0.012 1010.22 
C 0.021 1271.76 0.022 1269.27 
D 0.453 3137.10 0.486 3204.54 
E 0.309 2987.50 0.336 3050.00 
F 0.230 2865.07 0.251 2965.08 
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